Introducing a new meta-heuristic algorithm based on See-See Partridge Chicks Optimization to solve dynamic optimization problems
نویسندگان
چکیده مقاله:
The SSPCO (See-See Particle Chicks Optimization) is a type of swarm intelligence algorithm derived from the behavior of See-See Partridge. Although efficiency of this algorithm has been proven for solving static optimization problems, it has not yet been tested to solve dynamic optimization problems. Due to the nature of NP-Hard dynamic problems, this algorithm alone is not able to solve such optimization problems. Therefore, to enable the algorithm to optimally track the variable in these problems, it is necessary to be provided solutions with this algorithm so that can increase the performance of this algorithm for dynamic environments. In this paper, two solutions for combining SSPCO are presented: (1) the multi-swarm method and (2) memory with Gaussian density estimation. The problem with most multi-swarm methods is that as the population increases uncontrollably, the speed and efficiency of the algorithm gradually decreases. The multi-swarm methods presented in this paper is adapted to the problem space, and whenever there is a need to increase the population, a population is created adaptively, and this reduces the problems of previous methods. One of the issues that is being addressed to solve uncertainty problems is prediction of near future using data of the near past. In this article, to preserve past data a new memory called Gaussian density estimation memory is used. This memory fixes standard memory defects and improves the performance of the proposed algorithm. To evaluate the efficiency of the proposed method, the well-known moving peak benchmark function, which simulates behavior of dynamic problems, is used. The proposed algorithm is compared with the 10 most popular dynamic optimization algorithms. According to the experimental results, the proposed method reduces offline error to a great extent compared to other methods and the error produced by the proposed method is very small.
منابع مشابه
A Heuristic Algorithm to Solve Toll Optimization Problems
During the early years of industrial development, the production facilities were established near the consumers because the transportation was expensive, time-consuming, and risky. When transportation systems appeared, they allowed the producer to compete in distant markets, promoting economies of scale by increasing sales volume. Due to the complexity of products and globalization, supply and ...
متن کاملNEW META-HEURISTIC OPTIMIZATION ALGORITHM USING NEURONAL COMMUNICATION
A new meta-heuristic method, based on Neuronal Communication (NC), is introduced in this article. The neuronal communication illustrates how data is exchanged between neurons in neural system. Actually, this pattern works efficiently in the nature. The present paper shows it is the same to find the global minimum. In addition, since few numbers of neurons participate in each step of the method,...
متن کاملClustering and Memory-based Parent-Child Swarm Meta-heuristic Algorithm for Dynamic Optimization
So far, various optimization methods have been proposed, and swarm intelligence algorithms have gathered a lot of attention by academia. However, most of the recent optimization problems in the real world have a dynamic nature. Thus, an optimization algorithm is required to solve the problems in dynamic environments well. In this paper, a novel collective optimization algorithm, namely the Clus...
متن کاملA NOVEL META-HEURISTIC ALGORITHM: TUG OF WAR OPTIMIZATION
This paper presents a novel population-based meta-heuristic algorithm inspired by the game of tug of war. Utilizing a sport metaphor the algorithm, denoted as Tug of War Optimization (TWO), considers each candidate solution as a team participating in a series of rope pulling competitions. The teams exert pulling forces on each other...
متن کاملA Meta-heuristic Algorithm for Global Numerical Optimization Problems inspired by Vortex in fluid physics
One of the most important issues in engineering is to find the optimal global points of the functions used. It is not easy to find such a point in some functions due to the reasons such as large number of dimensions or inability to derive them from the function. Also in engineering modeling, we do not have the relationships of many functions, but we can input and output them as a black box. The...
متن کاملnew meta-heuristic optimization algorithm using neuronal communication
a new meta-heuristic method, based on neuronal communication (nc), is introduced in this article. the neuronal communication illustrates how data is exchanged between neurons in neural system. actually, this pattern works efficiently in the nature. the present paper shows it is the same to find the global minimum. in addition, since few numbers of neurons participate in each step of the method,...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 8 شماره 2
صفحات 38- 65
تاریخ انتشار 2020-02
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی برای این مقاله ارائه نشده است
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023